Pandas: Calculate Mean Leaving Out Own Row's Value
I want to calculate means by group, leaving out the value of the row itself. import pandas as pd d = {'col1': ['a', 'a', 'b', 'a', 'b', 'a'], 'col2': [0, 4, 3, -5, 3, 4]} df = pd.
Solution 1:
You could GroupBy
col1
and transform
with the mean. Then subtract the value from a given row from the mean:
df['col2'] = df.groupby('col1').col2.transform('mean').sub(df.col2)
Solution 2:
Thanks for all your input. I ended up using the approach linked to by @VnC.
Here's how I solved it:
import pandas as pd
d = {'col1': ["a", "a", "b", "a", "b", "a"], 'col2': [0, 4, 3, -5, 3, 4]}
df = pd.DataFrame(data=d)
group_summary = df.groupby('col1', as_index=False)['col2'].agg(['mean', 'count'])
df = pd.merge(df, group_summary, on = 'col1')
df['other_sum'] = df['col2'] * df['mean'] - df['col2']
df['result'] = df['other_sum'] / (df['count'] - 1)
Check out the final result:
df['result']
Which prints:
Out:01.0000001-0.33333322.6666673-0.33333343.00000053.000000Name:result,dtype:float64
Edit: I previously had some trouble with column names, but I fixed it using this answer.
Post a Comment for "Pandas: Calculate Mean Leaving Out Own Row's Value"