Fill In Missing Values In Pandas Dataframe Using Mean
datetime 2012-01-01 125.5010 2012-01-02 NaN 2012-01-03 125.5010 2013-01-04 NaN 2013-01-05 125.5010 2013-02-28 125.5010 2014-02-28 125.5010 2016-01-02 125.50
Solution 1:
You can use groupby
by month
and day
and transform
with fillna
mean
:
print df.groupby([df.index.month, df.index.day]).transform(lambda x: x.fillna(x.mean()))
datetime
2012-01-01 125.501
2012-01-02 125.501
2012-01-03 125.501
2013-01-04 125.501
2013-01-05 125.501
2013-02-28 125.501
2014-02-28 125.501
2016-01-02 125.501
2016-01-04 125.501
2016-02-28 125.501
Post a Comment for "Fill In Missing Values In Pandas Dataframe Using Mean"