How To Combine Consecutive Data In A Dataframe And Add Up Value
I have a dataframe : Type: Volume: Date: Q 10 2016.6.1 Q 20 2016.6.1 T 10 2016.6.2 Q 10 2016.6.3 T 20 2016.6.4 T 20
Solution 1:
import numpy as np
import pandas as pd
df = pd.DataFrame({"Type": ["Q", "Q", "T", "Q", "T", "T", "Q"],
"Volume": [10, 20, 10, 10, 20, 20, 10],
"Date": ["2016-06-01", "2016-06-01", "2016-06-02", "2016-06-03",
"2016-06-04", "2016-06-05", "2016-06-06"]})
df["Date"] = pd.to_datetime(df["Date"])
res = df.groupby(by = [df.Type.ne('T').cumsum(), 'Type'], as_index=False).agg({'Volume': 'sum', 'Date': 'first'})
print(res)
Output:
Type Date Volume
0 Q 2016-06-01 10
1 Q 2016-06-01 20
2 T 2016-06-02 10
3 Q 2016-06-03 10
4 T 2016-06-04 40
5 Q 2016-06-06 10
Post a Comment for "How To Combine Consecutive Data In A Dataframe And Add Up Value"