Convert Numpy Array To 0 Or 1
Solution 1:
I think you need vectorized function np.where
:
B = np.where(A > 0.5, 1, 0)
print (B)
[[1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1 0 0 1 1 0]]
B = np.where(A <= 0.5, 0, 1)
print (B)
[[1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1 0 0 1 1 0]]
But better is holdenweb solution if need convert to 0
and 1
only.
np.where
is better if need convert to another scalars like 5
and 10
or a
and b
:
C = np.where(A > 0.5, 5, 10)
print (C)
[[ 5 5 5 5 5 5 10 5 5 5 10 10 5 5 10 5 10 5 10 10 5 10 10 5
5 5 5 10 10 5 10 5 5 10 5 10 10 5 10 10 5 10 5 10 5 10 10 5
5 10]]
D = np.where(A > 0.5, 'a', 'b')
print (D)
[['a''a''a''a''a''a''b''a''a''a''b''b''a''a''b''a''b''a''b''b''a''b''b''a''a''a''a''b''b''a''b''a''a''b''a''b''b''a''b''b''a''b''a''b''a''b''b''a''a''b']]
Timings:
np.random.seed(223)
A = np.random.rand(1,1000000)
#jez
In [64]: %timeit np.where(A > 0.5, 1, 0)
100 loops, best of 3: 7.58 ms per loop
#holdenweb
In [65]: %timeit (A > 0.5).astype(int)
100 loops, best of 3: 3.47 ms per loop
#stamaimer
In [66]: %timeit element_wise_round(A)
1 loop, best of 3: 318 ms per loop
Solution 2:
Standard numpy
broadcasting can be used to compare each element with a scalar value, yielding a Boolean for each element. The ndarray.astype
method then converts the True
values to 1 and the False
values to zero.
In [16]: (A > 0.5).astype(int)
Out[16]:
array([[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0,
0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,
1, 0, 0, 1, 1, 0]])
Solution 3:
np.random.seed(223)
A = np.random.rand(1000000)
A = [0if i <=0.5else1for i in A]
Solution 4:
The problem with your code is the dimension of A[i] in your code. A is initialised as matrix[1,n] (1 row and n columns - you have double [[]] brackets in np.array([[]])), so you reference of type A[i] actually means "the whole i'th row, or an array(n) in this case). I'm quite new to python and numpy, but to access individual cells and set each to 1 or 0 could be coded this way (of course, only if you are forced to use FOR loops here):
for i in range(A.shape[1]):
if A[0,i]>0.5:
Y_prediction[0,i] =1else:
Y_prediction[0,i] = 0
But,definitely, the best solution, as others described above, is to avoid for loop.
Solution 5:
You can make the built-in round
function element wise use np.vectorize
.
import numpy as np
element_wise_round = np.vectorize(round, otypes=[np.int])
print element_wise_round(A)
Post a Comment for "Convert Numpy Array To 0 Or 1"