Using Str.split For Pandas Dataframe Values Based On Parentheses Location
Let's say I have the following dataframe series df['Name'] column: Name 'Jerry' 'Adam (and family)' 'Paul and Hellen (and family):\n' 'John and Peter (and family
Solution 1:
Solution with split
- is necessary escape (
by \
:
df['Name']= df['Name'].str.split("\s+\(").str[0]
print (df)
Name
0 'Jerry'
1 'Adam
2 'Paul and Hellen
3 'John and Peter
Solution with regex
and replace
:
df['Name']= df['Name'].str.replace("\s+\(.*$", "")
print (df)
Name
0 'Jerry'
1 'Adam
2 'Paul and Hellen
3 'John and Peter
\s+\(.*$
means replace from optional whitespace
, first (
to the end of string $
to ""
- empty string.
Solution 2:
Use regular expression:
>>>import re>>>str = 'Adam (and family)'>>>result = re.sub(r"( \().*$", '', str)>>>print result
Adam
Post a Comment for "Using Str.split For Pandas Dataframe Values Based On Parentheses Location"