Skip to content Skip to sidebar Skip to footer

Store Different Datatypes In One Numpy Array?

I have two different arrays, one with strings and another with ints. I want to concatenate them, into one array where each column has the original datatype. My current solution for

Solution 1:

One approach might be to use a record array. The "columns" won't be like the columns of standard numpy arrays, but for most use cases, this is sufficient:

>>> a = numpy.array(['a', 'b', 'c', 'd', 'e'])
>>> b = numpy.arange(5)
>>> records = numpy.rec.fromarrays((a, b), names=('keys', 'data'))
>>> records
rec.array([('a', 0), ('b', 1), ('c', 2), ('d', 3), ('e', 4)], 
      dtype=[('keys', '|S1'), ('data', '<i8')])
>>> records['keys']
rec.array(['a', 'b', 'c', 'd', 'e'], 
      dtype='|S1')
>>> records['data']
array([0, 1, 2, 3, 4])

Note that you can also do something similar with a standard array by specifying the datatype of the array. This is known as a "structured array":

>>> arr = numpy.array([('a', 0), ('b', 1)], 
                      dtype=([('keys', '|S1'), ('data', 'i8')]))
>>> arr
array([('a', 0), ('b', 1)], 
      dtype=[('keys', '|S1'), ('data', '<i8')])

The difference is that record arrays also allow attribute access to individual data fields. Standard structured arrays do not.

>>> records.keys
chararray(['a', 'b', 'c', 'd', 'e'], 
      dtype='|S1')
>>> arr.keys
Traceback(most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'numpy.ndarray' object has no attribute 'keys'

Solution 2:

A simple solution: convert your data to object 'O' type

z = np.zeros((2,2), dtype='U2')
o = np.ones((2,1), dtype='O')
np.hstack([o, z])

creates the array:

array([[1, '', ''],
       [1, '', '']], dtype=object)

Solution 3:

Refering Numpy doc, there is a function named numpy.lib.recfunctions.merge_arraysfunction which can be used to merge numpy arrays in different data type into either structured array or record array.

Example:

>>> from numpy.lib import recfunctions as rfn
>>> A = np.array([1, 2, 3])
>>> B = np.array(['a', 'b', 'c'])
>>> b = rfn.merge_arrays((A, B))
>>> b
array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=[('f0', '<i4'), ('f1', '<U1')])

For more detail please refer the link above.

Post a Comment for "Store Different Datatypes In One Numpy Array?"