Store Different Datatypes In One Numpy Array?
I have two different arrays, one with strings and another with ints. I want to concatenate them, into one array where each column has the original datatype. My current solution for
Solution 1:
One approach might be to use a record array. The "columns" won't be like the columns of standard numpy arrays, but for most use cases, this is sufficient:
>>> a = numpy.array(['a', 'b', 'c', 'd', 'e'])
>>> b = numpy.arange(5)
>>> records = numpy.rec.fromarrays((a, b), names=('keys', 'data'))
>>> records
rec.array([('a', 0), ('b', 1), ('c', 2), ('d', 3), ('e', 4)],
dtype=[('keys', '|S1'), ('data', '<i8')])
>>> records['keys']
rec.array(['a', 'b', 'c', 'd', 'e'],
dtype='|S1')
>>> records['data']
array([0, 1, 2, 3, 4])
Note that you can also do something similar with a standard array by specifying the datatype of the array. This is known as a "structured array":
>>> arr = numpy.array([('a', 0), ('b', 1)],
dtype=([('keys', '|S1'), ('data', 'i8')]))
>>> arr
array([('a', 0), ('b', 1)],
dtype=[('keys', '|S1'), ('data', '<i8')])
The difference is that record arrays also allow attribute access to individual data fields. Standard structured arrays do not.
>>> records.keys
chararray(['a', 'b', 'c', 'd', 'e'],
dtype='|S1')
>>> arr.keys
Traceback(most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'numpy.ndarray' object has no attribute 'keys'
Solution 2:
A simple solution: convert your data to object 'O' type
z = np.zeros((2,2), dtype='U2')
o = np.ones((2,1), dtype='O')
np.hstack([o, z])
creates the array:
array([[1, '', ''],
[1, '', '']], dtype=object)
Solution 3:
Refering Numpy doc, there is a function named numpy.lib.recfunctions.merge_arrays
function which can be used to merge numpy arrays in different data type into either structured array or record array.
Example:
>>> from numpy.lib import recfunctions as rfn
>>> A = np.array([1, 2, 3])
>>> B = np.array(['a', 'b', 'c'])
>>> b = rfn.merge_arrays((A, B))
>>> b
array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=[('f0', '<i4'), ('f1', '<U1')])
For more detail please refer the link above.
Post a Comment for "Store Different Datatypes In One Numpy Array?"