Select Rows Between Two Datetimeindex Dates
I have a CSV file of the following format: vm,time,LoadInt1 abc-webapp-02,2017-05-31 10:00:00,3.133333 abc-webapp-02,2017-05-31 10:05:00,0.000000 abc-webapp-02,2017-05-31 10:10:00,
Solution 1:
Using query
method:
df = pd.read_csv("my_file.csv", index_col=1, parse_dates=True)
In [121]: df.query("'2017-05-30' <= index <= '2017-06-01'")
Out[121]:
vm LoadInt1
time2017-05-3110:00:00 abc-webapp-023.1333332017-05-3110:05:00 abc-webapp-020.0000002017-05-3110:10:00 abc-webapp-020.0000002017-05-3110:15:00 abc-webapp-020.0000002017-05-3110:20:00 abc-webapp-020.0000002017-05-3110:25:00 abc-webapp-020.0000002017-05-3110:30:00 abc-webapp-020.0000002017-05-3110:35:00 abc-webapp-020.0000002017-05-3110:40:00 abc-webapp-020.000000
Solution 2:
This type of index slicing includes the end points and so what you have will include the entire sample set
df.loc['2017-05-30':'2017-05-31']#df['2017-05-30':'2017-05-31']vmLoadInt1time2017-05-31 10:00:00 abc-webapp-023.1333332017-05-31 10:05:00 abc-webapp-020.0000002017-05-31 10:10:00 abc-webapp-020.0000002017-05-31 10:15:00 abc-webapp-020.0000002017-05-31 10:20:00 abc-webapp-020.0000002017-05-31 10:25:00 abc-webapp-020.0000002017-05-31 10:30:00 abc-webapp-020.0000002017-05-31 10:35:00 abc-webapp-020.0000002017-05-31 10:40:00 abc-webapp-020.000000
This shows the same thing but actually subsets
df.loc['2017-05-3110:10':'2017-05-3110:35']vmLoadInt1time2017-05-31 10:10:00 abc-webapp-020.02017-05-31 10:15:00 abc-webapp-020.02017-05-31 10:20:00 abc-webapp-020.02017-05-31 10:25:00 abc-webapp-020.02017-05-31 10:30:00 abc-webapp-020.02017-05-31 10:35:00 abc-webapp-020.0
Your import could be made smaller. You don't need the parser
df = pd.read_csv("my_file.csv", parse_dates=[1], index_col=1)
Post a Comment for "Select Rows Between Two Datetimeindex Dates"