Selecting Only Required Keys From A Dictionary Using A Dataframe
I have a data frame with products and their status like below DataFrame: products status 11 sale 22 sale 33 notsale 44 notsale 55 notsale 66 removed 77 removed 88 notsal
Solution 1:
First filter by boolean indexing
values with removed
and then in dict comprehension
convert values to set
for unique values and then remove values of a
:
a = df.loc[df['status'] == 'removed', 'products'].tolist()
print (a)
[66, 77, 333, 444]
d = {1: [11,22,33,555,33], 2:[33,66,77,88,99],
3:[11,88,99,222,333,555], 4:[333,33,444,44],5:[333,444,22,33,44,55,66]}
d1 = {k: list(set(v)-set(a)) for k, v in d.items()}
print (d1)
{1: [33, 11, 22, 555], 2: [88, 33, 99],
3: [11, 555, 99, 222, 88], 4: [33, 44], 5: [33, 44, 22, 55]}
EDIT:
For filter by multiple keywors use isin
:
a = df.loc[df['status'].isin(['removed', 'notsale']), 'products'].tolist()
Post a Comment for "Selecting Only Required Keys From A Dictionary Using A Dataframe"