Python: Matplotlib Plot Inside Qml Layout
Solution 1:
I don't have a full solution, but if you're OK with just displaying charts and the fact that you'll have to provide any interactive controls by yourself, then there's a reasonably simple way to do that.
First of all, you will need to convert your matplotlib chart into a QImage. Fortunately doing so is surprisingly easy. The canonical backend (renderer) for matplotlib is *Agg`, and it allows you to render your Figure into a memory. Just make a suitable Canvas object for you Figure, then call .draw(). The QImage constructor will take generated data directly as inputs.
canvas = FigureCanvasAgg(figure)
canvas.draw()
img = QtGui.QImage(canvas.buffer_rgba(), *canvas.get_width_height(), QtGui.QImage.Format_RGBA8888).copy()
The Qt way to provide that image into QML is to use QQuickImageProvider. It will get "image name" as input from QML and should provide a suitable image as output. This allows you to serve all matplotlib charts in your app with just one Image provider. When I was working on a small visualization app for internal use, I ended up with a code like this:
import PyQt5.QtCore as QtCore
import PyQt5.QtGui as QtGui
import PyQt5.QtQuick as QtQuick
import PyQt5.QtQml as QtQml
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg
classMatplotlibImageProvider(QtQuick.QQuickImageProvider):
figures = dict()
def__init__(self):
QtQuick.QQuickImageProvider.__init__(self, QtQml.QQmlImageProviderBase.Image)
defaddFigure(self, name, **kwargs):
figure = Figure(**kwargs)
self.figures[name] = figure
return figure
defgetFigure(self, name):
return self.figures.get(name, None)
defrequestImage(self, p_str, size):
figure = self.getFigure(p_str)
if figure isNone:
return QtQuick.QQuickImageProvider.requestImage(self, p_str, size)
canvas = FigureCanvasAgg(figure)
canvas.draw()
w, h = canvas.get_width_height()
img = QtGui.QImage(canvas.buffer_rgba(), w, h, QtGui.QImage.Format_RGBA8888).copy()
return img, img.size()
Whenever I need to draw a plot in python code, I just create Figure using this addFigure to give it a name and let the Qt to know about it. Once you got Figure, rest of matplotlib drawing happens exactly as usual. Make axes and plot.
self.imageProvider = MatplotlibImageProvider()
figure = self.imageProvider.addFigure("eventStatisticsPlot", figsize=(10,10))
ax = figure.add_subplot(111)
ax.plot(x,y)
Then in QML code I can simply refer matplotlib image by name ("eventStatisticsPlot")
Image {
source: "image://perflog/eventStatisticsPlot"
}
Note that URL is prefixed by "image://" to tell QML that we need to get image from QQuickImageProvider and includes name ("perflog") of a particular provider to use. For this stuff to work we need to register our provider during QML initialization with a call to addImageProvider. For example,
engine = QtQml.QQmlApplicationEngine()
engine.addImageProvider('perflog', qt_model.imageProvider)
engine.load(QtCore.QUrl("PerflogViewer.qml"))
At this point you should be able to see static graphs shown, but they will not be updated properly because Image component in QML assumes that image that we provide does not change. I found no good solution for it, but an ugly workaround is fairly simple. I added a signal called eventStatisticsPlotChanged
to my helper class that exposes Python app data to QML and .emit()
it whenever the relevant plot is changed. E.g. here's a chunk of code where I get data from QML on a time interval selected by user.
@QtCore.pyqtSlot(float, float)defselectTimeRange(self, min_time, max_time):
self.selectedTimeRange = (min_time, max_time)
_, ax, _ = self.eventStatisticsPlotElements
ax.set_xlim(*self.selectedTimeRange)
self.eventStatisticsPlotChanged.emit()
See that .emit() in the end? In QML this event forces image to reload URL like this:
Image {
source: "image://perflog/eventStatisticsPlot"
cache: falsefunctionreload() { var t = source; source = ""; source = t; }
}
Connections {
target: myDataSourceObjectExposedFromPython
onEventStatisticsPlotChanged: eventStatisticsPlot.reload()
}
So whenever user moves a control, following happens:
- QML sends updated time interval to my data source via selectTimeRange() call
- My code calls .set_xlim on appopriate matplotlib object and emit() a signal to notify QML that chart changed
- QML queries my imageProvider for updated chart image
- My code renders matplotlib chart into new QImage with Agg and passes it to Qt
- QML shows that image to user
It might sound a bit complicated, but its actually easy to design and use.
Here's an example of how all this looks in our small visualization app. That's pure Python + QML, with pandas used to organize data and matplotlib to show it. Scroll-like element on bottom of the screen essentially redraws chart on every event and it happens so fast that it feels real-time.
I also tried to use SVG as a way to feed vector image into QML. It's also possible and it also works. Matplotlib offers SVG backend (matplotlib.backends.backend_svg) and Image QML component support inline SVG data as a Source. The SVG data is text so it can be easily passed around between python and QML. You can update (source) field with new data and image will redraw itself automatically, you can rely on data binding. It could've worked quite well, but sadly SVG support in Qt 4 and 5 is poor. Clipping is not supported (charts will go out of the axes); resizing Image does not re-render SVG but resizes pixel image of it; changing SVG causes image to blink; performance is poor. Maybe this will change one day later, but for now stick to agg backend.
I really love design of both matlpotlib and Qt. It's smart and it meshes well without too much effort or boilerplate code.
Post a Comment for "Python: Matplotlib Plot Inside Qml Layout"