Ignoring Nan In A Dataframe
I want to find the unique elements in a column of a dataframe which have missing values. i tried this: df[Column_name].unique() but it returns nan as one of the elements. what can
Solution 1:
Try calling .dropna()
right before your call to .unique()
. A working example:
import pandas as pd
import numpy as np
df = pd.DataFrame({'col1': np.random.randint(0, 10, 12)})
df.loc[2] = np.nan
df.loc[5] = np.nan
df['col1'].unique()
### output: array([ 4., 0., nan, 8., 1., 3., 2., 6.])
df['col1'].dropna().unique()
### output: array([ 4., 0., 8., 1., 3., 2., 6.])
Post a Comment for "Ignoring Nan In A Dataframe"