Skip to content Skip to sidebar Skip to footer

How To Get Frequency Count Of Column Values For Each Unique Pair Of Columns In Pandas?

I have a Dataframe that looks like below data = [(datetime.datetime(2021, 2, 10, 7, 49, 7, 118658), u'12.100.90.10', u'100.100.12.1', u'LT_DOWN'), (datetime.datetime(2021, 2

Solution 1:

You can use the same solution you are referring to and sum, and unstack along last axis:

pd.crosstab(
       index=df['date'].dt.floor('1min'), 
       columns=[
           df['start'], 
           df['end'], 
           df['type'].str.extract(r'(\w+)_', expand=False)
      ], 
    ).astype(bool).sum().unstack(-1, fill_value=0)

type                       LT  MA  PL
start        end                     
10.10.80.10  10.55.10.1     0   1   1
10.100.80.10 10.55.10.1     0   0   1
12.100.90.10 100.100.12.1   1   0   1

Post a Comment for "How To Get Frequency Count Of Column Values For Each Unique Pair Of Columns In Pandas?"