How To Get A Subset Of Rows From A Numpy Matrix Based On A Condition?
How to return a set of rows of a NumPy Matrix that would match a given condition? This is a Numpy Matrix object >>> X matrix([['sunny', 'hot', 'high', 'FALSE'], [
Solution 1:
>>> X[(X[:, 0] == 'rainy').ravel(), :]
matrix([['rainy', 'mild', 'high', 'FALSE'],
['rainy', 'cool', 'normal', 'FALSE'],
['rainy', 'cool', 'normal', 'TRUE'],
['rainy', 'mild', 'normal', 'FALSE'],
['rainy', 'mild', 'high', 'TRUE']],
dtype='|S8')
If you look at the result of your comparison:
>>> X[:, 0] == 'rainy'array([[False],
[False],
[False],
[ True],
[ True],
[ True],
[False],
[False],
[False],
[ True],
[False],
[False],
[False],
[ True]], dtype=bool)
This needs to be flattened into a vector using ravel:
(X[:, 0] == 'rainy').ravel()
array([False, False, False, True, True, True, False, False, False,
True, False, False, False, True], dtype=bool)
For additional constraints, this works:
X[(X[:, 0] == 'rainy').ravel() & (X[:, 1] == 'cool').ravel(), :]
matrix([['rainy', 'cool', 'normal', 'FALSE'],
['rainy', 'cool', 'normal', 'TRUE']],
dtype='|S8')
Solution 2:
There are more than one way of doing it.
foo = np.where(X[:, 0] == 'rainy') # get the index
X[foo, :] # The result you want.
Post a Comment for "How To Get A Subset Of Rows From A Numpy Matrix Based On A Condition?"