Is There A Faster Way To Update Dataframe Column Values Based On Conditions?
I am trying to process a dataframe. This includes creating new columns and updating their values based on the values in other columns. More concretely, I have a predefined 'source'
Solution 1:
Another way to do this is to use pd.get_dummies
on the dataframe. First put '_id' into the index.
source = source.set_index('_id')
df_out = pd.get_dummies(source).reset_index()
print(df_out)
Output:
_id source_Cash 1 source_DTOT source_DTP
0AV4MdG6Ihowv-SKBN_nB0011AV4Mc2vNhowv-SKBN_Rn1002AV4MeisikOpWpLdepWy60013AV4MeRh6howv-SKBOBOn1004AV4Mezwchowv-SKBOB_S0105AV4MeB7yhowv-SKBOA5b001
Solution 2:
You can use str.get_dummies
to get your OHEncodings.
c = df.source.str.get_dummies().add_prefix('source_').iloc[:, ::-1]
c.columns = c.columns.str.lower().str.split().str[0]
print(c)
source_dtp source_dtot source_cash
010010012100300140105100
Next, concatenate c
with _id
using pd.concat
.
df = pd.concat([df._id, c], 1)
print(df)
_id source_dtp source_dtot source_cash
0AV4MdG6Ihowv-SKBN_nB1001AV4Mc2vNhowv-SKBN_Rn0012AV4MeisikOpWpLdepWy61003AV4MeRh6howv-SKBOBOn0014AV4Mezwchowv-SKBOB_S0105AV4MeB7yhowv-SKBOA5b100
Improvement! Now slightly smoother, thanks to Scott Boston's set_index
- reset_index
paradigm:
df = df.set_index('_id')\
.source.str.get_dummies().iloc[:, ::-1]
df.columns = df.columns.str.lower().str.split().str[0]
df = df.add_prefix('source_').reset_index()
print(df)
_id source_dtp source_dtot source_cash
0AV4MdG6Ihowv-SKBN_nB1001AV4Mc2vNhowv-SKBN_Rn0012AV4MeisikOpWpLdepWy61003AV4MeRh6howv-SKBOBOn0014AV4Mezwchowv-SKBOB_S0105AV4MeB7yhowv-SKBOA5b100
Post a Comment for "Is There A Faster Way To Update Dataframe Column Values Based On Conditions?"