Create An Array Where Each Element Stores Its Indices
Solution 1:
Do you do this because you need it or just for sport? In the former case:
np.moveaxis(np.indices((4,5)), 0, -1)
np.indices
does precisely what its name suggests. Only it arranges axes differently to you. So we move them with moveaxis
As @Eric points out one attractive feature of this method is that it works unmodified at arbitrary number of dimensions:
dims = tuple(np.multiply.reduceat(np.zeros(16,int)+2, np.r_[0, np.sort(np.random.choice(16, np.random.randint(10)))]))
# len(dims) == ?
np.moveaxis(np.indices(dims), 0, -1) # works
Solution 2:
Here's an initialization based method -
def create_grid(m,n):
out = np.empty((m,n,2),dtype=int) #Improvement suggested by @AndrasDeakout[...,0] = np.arange(m)[:,None]
out[...,1] = np.arange(n)
returnout
Sample run -
In [47]: create_grid(4,5)
Out[47]:
array([[[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4]],
[[1, 0],
[1, 1],
[1, 2],
[1, 3],
[1, 4]],
[[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4]],
[[3, 0],
[3, 1],
[3, 2],
[3, 3],
[3, 4]]])
Runtime test for all approaches posted thus far on (4,5)
grided and bigger sizes -
In [111]: %timeit np.moveaxis(np.indices((4,5)), 0, -1)
...: %timeit np.mgrid[:4, :5].swapaxes(2, 0).swapaxes(0, 1)
...: %timeit np.mgrid[:4,:5].transpose(1,2,0)
...: %timeit create_grid(4,5)
...:
100000 loops, best of 3: 11.1 µs per loop
100000 loops, best of 3: 17.1 µs per loop
100000 loops, best of 3: 17 µs per loop
100000 loops, best of 3: 2.51 µs per loop
In [113]: %timeit np.moveaxis(np.indices((400,500)), 0, -1)
...: %timeit np.mgrid[:400, :500].swapaxes(2, 0).swapaxes(0, 1)
...: %timeit np.mgrid[:400,:500].transpose(1,2,0)
...: %timeit create_grid(400,500)
...:
1000 loops, best of 3: 351 µs per loop
1000 loops, best of 3: 1.01 ms per loop
1000 loops, best of 3: 1.03 ms per loop
10000 loops, best of 3: 190 µs per loop
Solution 3:
You can abuse numpy.mgrid
or meshgrid
for this purpose:
>>> import numpy as np
>>> np.mgrid[:4,:5].transpose(1,2,0)
array([[[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4]],
[[1, 0],
[1, 1],
[1, 2],
[1, 3],
[1, 4]],
[[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4]],
[[3, 0],
[3, 1],
[3, 2],
[3, 3],
[3, 4]]])
Solution 4:
You can use numpy.mgrid
and swap it's axes:
>>> # assuming a 3x3 array
>>> np.mgrid[:3, :3].swapaxes(-1, 0)
array([[[0, 0],
[1, 0],
[2, 0]],
[[0, 1],
[1, 1],
[2, 1]],
[[0, 2],
[1, 2],
[2, 2]]])
That still differs a bit from your desired array so you can roll your axes:
>>> np.mgrid[:3, :3].swapaxes(2, 0).swapaxes(0, 1)
array([[[0, 0],
[0, 1],
[0, 2]],
[[1, 0],
[1, 1],
[1, 2]],
[[2, 0],
[2, 1],
[2, 2]]])
Given that someone timed the results I also want to present a manual numba based version that "beats 'em all":
import numba as nb
import numpy as np
@nb.njitdef_indexarr(a, b, out):
for i inrange(a):
for j inrange(b):
out[i, j, 0] = i
out[i, j, 1] = j
return out
defindexarr(a, b):
arr = np.empty([a, b, 2], dtype=int)
return _indexarr(a, b, arr)
Timed:
a, b = 400, 500
indexarr(a, b) # numba needs a warmup run
%timeit indexarr(a, b) # 1000 loops, best of 3: 1.5 ms per loop
%timeit np.mgrid[:a, :b].swapaxes(2, 0).swapaxes(0, 1) # 100 loops, best of 3: 7.17 ms per loop
%timeit np.mgrid[:a, :b].transpose(1,2,0) # 100 loops, best of 3: 7.47 ms per loop
%timeit create_grid(a, b) # 100 loops, best of 3: 2.26 ms per loop
and on a smaller array:
a, b = 4, 5
indexarr(a, b)
%timeit indexarr(a, b) # 100000 loops, best of 3: 13 µs per loop
%timeit np.mgrid[:a, :b].swapaxes(2, 0).swapaxes(0, 1) # 10000 loops, best of 3: 181 µs per loop
%timeit np.mgrid[:a, :b].transpose(1,2,0) # 10000 loops, best of 3: 182 µs per loop
%timeit create_grid(a, b) # 10000 loops, best of 3: 32.3 µs per loop
As promised it "beats 'em all" in terms of performance :-)
Post a Comment for "Create An Array Where Each Element Stores Its Indices"