Python/r: Generate Dataframe From Xml When Not All Nodes Contain All Variables?
Solution 1:
A general R solution that does not require to hardcode the variables.
Using xml2
and tidyverse's purrr
:
library(xml2)
library(purrr)
myxml %>%
xml_find_all('obs')%>%# Enter each obs and return a df
map_df(~{# Scan names
node_names <- .x %>%
xml_children()%>%
xml_name()%>%
unique()# Remember ob
ob <- .x
# Enter each node
map(node_names,~{# Find similar nodes
node <- xml_find_all(ob, .x)%>%
xml_text(trim =TRUE)%>%
paste0(collapse ='|')%>%'names<-'(.x)# ^ we need to name the element to # overwrite it with its 'sibilings'})%>%# Return an 'ob' vector
flatten()})#> # A tibble: 2 × 3#> name hobby skill#> <chr> <chr> <chr>#> 1 John tennis|golf python#> 2 Robert <NA> R
What it does:
- It 'enters' each
obs
, find and store the node names in that obs. - For each node find all the similar node in the
obs
, collapse them and store in a list. - Flattens the list, overwriting elements with the same name.
rbind
(implicit inmap_df()
) each 'flatted' list into the resultingdata.frame
.
Data:
myxml <- read_xml('
<data>
<obs ID="a">
<name> John </name>
<hobby> tennis </hobby>
<hobby> golf </hobby>
<skill> python </skill>
</obs>
<obs ID="b">
<name> Robert </name>
<skill> R </skill>
</obs>
</data>
')
Solution 2:
pandas
import pandas as pd
from collections import defaultdict
import xml.etree.ElementTree as ET
xml_txt = """<data>
<obs ID="a">
<name> John </name>
<hobby> tennis </hobby>
<hobby> golf </hobby>
<skill> python </skill>
</obs>
<obs ID="b">
<name> Robert </name>
<skill> R </skill>
</obs>
</data>"""
etree = ET.fromstring(xml_txt)
defobs2series(o):
d = defaultdict(list)
[d[c.tag].append(c.text.strip()) for c in o.getchildren()];
return pd.Series(d).str.join('|')
pd.DataFrame([obs2series(o) for o in etree.findall('obs')])
hobby name skill
0 tennis|golf John python
1 NaN Robert R
How It Works
- build an element tree from the string. Otherwise do something like
et = ET.parse('my_data.xml')
etree.findall('obs')
returns a list of elements within thexml
structure that are'obs'
tags- I pass each of these to a
pd.Series
constructorobs2series
- Within
obs2series
I loop through all child nodes in one'obs'
element. defaultdict
defaults to alist
meaning I can append to a value even if the key hasn't been seen before.- I end up with a dictionary of lists. I pass this to
pd.Series
to get a series of lists. - Using
pd.Series.str.join('|')
I convert this to a series of strings as I wanted. - My list comprehension in the beginning that looped over observations is now a list of series and ready to passed to the
pd.DataFrame
constructor.
Solution 3:
XML
Create a function that can handle missing or multiple nodes, and then apply that to the obs
nodes. I added the id column so you can see how to use xmlGetAttr
too (use "."
for the obs node and the leading "."
on other nodes so its relative to that current node in the set).
xpath2 <-function(x, ...){
y <- xpathSApply(x, ...)
ifelse(length(y) == 0, NA, paste(trimws(y), collapse=", "))
}
obs <- getNodeSet(doc, "//obs")
data.frame( id = sapply(obs, xpath2, ".", xmlGetAttr, "ID"),
name = sapply(obs, xpath2, ".//name", xmlValue),
hobbies = sapply(obs, xpath2, ".//hobby", xmlValue),
skill = sapply(obs, xpath2, ".//skill", xmlValue))
id name hobbies skill
1 a John tennis, golf python
2 b Robert <NA> R
xml2
I don't use xml2
very often, but maybe get the obs
nodes and then apply xml_find_all
if there are duplicate tags instead of using xml_find_first
.
obs <- xml_find_all(myxml, "//obs")
lapply(obs, xml_find_all, ".//hobby")
data_frame(
name = xml_find_first(obs, ".//name") %>% xml_text(trim=TRUE),
hobbies = sapply(obs, function(x) paste(xml_text( xml_find_all(x, ".//hobby"), trim=TRUE), collapse=", " ) ),
skill = xml_find_first(obs, ".//skill") %>% xml_text(trim=TRUE)
)
# A tibble: 2 x 3
name hobbies skill
<chr> <chr> <chr>
1 John tennis, golf python
2 Robert R
I tested both methods using the medline17n0853.xml
file at the NCBI ftp. This is a 280 MB file with 30,000 PubmedArticle nodes, and the XML package took 102 seconds to parse pubmed ids, journals and combine multiple publication types. The xml2 code ran for 30 minutes and then I killed it, so that may not be the best solution.
Solution 4:
In R, I'd probably use
library(XML)
lst <- xmlToList(xmlParse(myxml)[['/data']])
(df <- data.frame(t(sapply(lst, function(x) {
c(x['name'], hobby=paste0(x[which(names(x)=='hobby')], collapse="|"))
}))) )
# name hobby# 1 John tennis | golf # 2 Robert
and maybe do some polishing using df[df==""] <- NA
and trimws()
to remove whitespaces.
Or:
library(xml2)
library(dplyr)
`%|||%` <-function(x, y)if(length(x)==0) y else x
(df <- data_frame(names= myxml %>%
xml_find_all("/data/obs/name")%>%
xml_text(trim=TRUE),
hobbies = myxml %>%
xml_find_all("/data/obs")%>%
lapply(function(x) xml_text(xml_find_all(x,"hobby"),T)%|||%NA_character_)))# # A tibble: 2 × 2# names hobbies# <chr> <list># 1 John <chr [2]># 2 Robert <chr [1]>
Post a Comment for "Python/r: Generate Dataframe From Xml When Not All Nodes Contain All Variables?"