Skip to content Skip to sidebar Skip to footer

Clustering Uni-variate Time Series Using Sklearn

I have a panda DataFrame from which, i would like to do clustering for each columns. I am using sklearn and this is what i have: data= pd.read_csv('data.csv') data=pd.DataFrame(dat

Solution 1:

The K-Means clusterer expects a 2D array, each row a data point, which can also be one-dimensional. In your case you have to reshape the pandas column to a matrix having len(data) rows and 1 column. See below an example that works:

from sklearn.cluster import KMeans
import pandas as pd

data = {'one': [1., 2., 3., 4., 3., 2., 1.], 'two': [4., 3., 2., 1., 2., 3., 4.]}
data = pd.DataFrame(data)

n_clusters = 2

for col in data.columns:
    kmeans = KMeans(n_clusters=n_clusters)
    X = data[col].reshape(-1, 1)
    kmeans.fit(X)
    print "{}: {}".format(col, kmeans.predict(X))

Post a Comment for "Clustering Uni-variate Time Series Using Sklearn"